METAL-ORGANIC COMPOUNDS

Acta Cryst. (1997). C53, 1182-1184

Sodium 1,6-Hexanediammonium Cyclotriphosphate Dihydrate

Hédi Thabet and Amor Jouini
Laboratoire de Chimie du Solide, Département de Chimie,
Faculté des Sciences de Monastir, Université du centre, 5000 Monastir, Tunisia

(Received I November 1996: accepted 11 April 1997)

Abstract

The mineral entities $\mathrm{P}_{3} \mathrm{O}_{9}$ and NaO_{6} are connected by OW1 water molecules in the title compound, $\mathrm{Na}^{+} . \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}^{2+} . \mathrm{P}_{3} \mathrm{O}_{9}^{3-} .2 \mathrm{H}_{2} \mathrm{O}$, to form ribbons running parallel to the c axis. Four ribbons create a channel which holds the organic cation.

Comment

Organic compounds resulting from the interaction of cyclotriphosphoric acid with organic molecules have not been studied extensively. Only seven have been structurally well characterized (Durif, 1995; Thabet \& Jouini, 1996). Among these compounds, only $\mathrm{K}^{+} . \mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}^{2+} . \mathrm{P}_{3} \mathrm{O}_{9}^{3-}$ was found to have a monovalent cation. In this work, we describe the crystal structure of sodium 1,6-hexanediammonium cyclotriphosphate dihydrate, (I), giving the second example of a compound obtained during the systematic investigation of the $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$-organic- $\mathrm{M}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ system.

(I)

The atomic arrangement in projection along the \mathbf{c} direction and the formation of channels by four ribbons of mineral entities are shown in Fig. 1. Organic cations reside in these channels. Fig. 2 represents, in projection along the \mathbf{b} direction, the ribbons resulting from the connection, along the c axis, of four $\mathrm{P}_{3} \mathrm{O}_{9}$ groups and two NaO_{6} distorted octahedra. One of the two water molecules is located near the Na^{+}cation; the second one, OW1, links ribbons via hydrogen bonding with the organic cations along the [101] direction. Two NaO_{6} octahedra, sharing the $\mathrm{OE} 31-\mathrm{OE} 31(2-x, 1-y$, $-1-z)$ edge, are associated in pairs. The $\mathrm{P}_{3} \mathrm{O}_{9}$ group observed in this arrangement has no internal symmetry. The $\mathrm{P}-\mathrm{P}$ distances and the corresponding $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles range from 2.867 (1) to 2.873 (1) \AA and from
59.88 (2) to $60.12(2)^{\circ}$, respectively, corroborating the regular conformation of the $\mathrm{P}_{3} \mathrm{O}_{9}$ group.
The $(\mathrm{N}-\mathrm{C}, \mathrm{C}-\mathrm{C})$ distances and $(\mathrm{N}-\mathrm{C}-\mathrm{C}, \mathrm{C}-$ $\mathrm{C}-\mathrm{C}$) angles, are similar to those reported previously for condensed phosphates with this organic cation (Loiseau \& Férey, 1994; Charfi \& Jouini, 1996; Thabet, Bdiri \& Jouini, 1997), i.e. they lie within the ranges $1.489(3)-1.530 \AA$ and $111.2(2)-112.9(2)^{\circ}$, respectively. All hydrogen bonds, establishing cohesion between the different components of this atomic arrangement, are weak since the corresponding $\mathrm{O}(\mathrm{N}) \cdots \mathrm{O}$ distances are 2.729-3.010 \AA (Blessing, 1986; Brown, 1976).

Fig. 1. Projection along the \mathbf{c} direction of the the atomic arrangement. $\mathrm{P}_{3} \mathrm{O}_{9}$ and NaO_{6} are given in polyhedral representation. Large empty circles represent N atoms, grey circles O water atoms, black ones C atoms and small empty circles H atoms. Hydrogen bonds are denoted by full and dotted lines.

Fig. 2. The b-axis projection of two ribbons linked by OW 1 molecules along the [101] direction. $\mathrm{P}_{3} \mathrm{O}_{9}$ and NaO_{6} groups are in polyhedral representation.

Experimental

$\mathrm{Na}\left[\mathrm{NH}_{3}\left(\mathrm{CH}_{26} \mathrm{NH}_{3}\right] \cdot \mathrm{P}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}\right.$ was prepared by action of cyclotriphosphoric acid, $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$, with an aqueous solution of 1,4 -diaminohexane (purity $>97 \%$) and sodium carbonate (purity $>99.5 \%$). The obtained solution was slowly evaporated at room temperature for two weaks. Crystals obtained in this way are stable under normal conditions of temperature and hygrometry. We note that $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ was synthesized using an aqueous solution of $\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ and ion-exchange resin Amberlite IR 120. Studied by TG-DTA and DSC techniques, the title compound was dehydrated in two steps at 384 and 409 K . The overall $\Delta \mathrm{H}$ of the dehydration is $84.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$. It. is to be noted that this compound decomposes before melting.

Crystal data

$\mathrm{Na}^{+} . \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}^{2+} . \mathrm{P}_{3} \mathrm{O}_{9}^{3-} .2 \mathrm{H}_{2} \mathrm{O}$ $M_{r}=414.16$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$

Triclinic
$P \overline{1}$
$a=8.619$ (1) \AA
$b=13.983(1) \AA$
$c=7.344$ (1) \AA
$\alpha=94.17(1)^{\circ}$
$\beta=68.69(1)^{\circ}$
$\gamma=102.14(1)^{\circ}$
$V=806.19$ (13) \AA^{3}
$Z=2$
$D_{x}=1.706 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.697 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by pycnometry
(toluene as pycnometric liquid)

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
3076 measured reflections
2832 independent reflections 2396 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.075$
$S=1.050$
2832 reflections
297 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0431 P)^{2}\right.$
$+0.332 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Cell parameters from 25 reflections
$\theta=13-14^{\circ}$
$\mu=0.453 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Transparent
$0.25 \times 0.20 \times 0.18 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.010$
$\theta_{\text {max }}=25^{\circ}$
$h=-10 \rightarrow 9$
$k=-16 \rightarrow 16$
$l=-8 \rightarrow 0$
1 standard reflection frequency: 120 min intensity decay: 0.78%
$(\Delta / \sigma)_{\text {max }}=-0.001$
$\Delta \rho_{\text {max }}=0.260 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.290 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.0169 (19)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

P1-OE12	1.464 (2)	P3- ${ }^{\text {a }}{ }^{\text {' }}$	3.4554 (9)
P1-OE11	1.490 (2)	$\mathrm{Na}-\mathrm{OE} 31$	2.361 (2)
P1-OL13	1.617 (1)	$\mathrm{Na}-\mathrm{OE} 12{ }^{\text {ii }}$	2.373 (2)
P1-OL12	1.621 (1)	$\mathrm{Na}-\mathrm{OE} 31{ }^{\text {i }}$	2.389 (2)
$\mathrm{P} 2-\mathrm{OE} 22$	1.473 (1)	$\mathrm{Na}-\mathrm{OE} 21$	2.449 (2)
$\mathrm{P} 2-\mathrm{OE} 21$	1.486 (2)	$\mathrm{Na}-\mathrm{OW} 2$	2.472 (2)
$\mathrm{P} 2-\mathrm{OL} 12$	1.611 (1)	$\mathrm{Na}-\mathrm{OE} 11$	2.637 (2)
P2-OL23	1.613 (1)	$\mathrm{Na}-\mathrm{P} 3^{\text {i }}$	3.4554 (9)
P3-OE31	1.476 (1)	$\mathrm{Na}-\mathrm{Na}^{\text {i }}$	3.611 (2)
P3-OE32	1.490 (1)	$\mathrm{N} 1-\mathrm{Cl}$	1.496 (3)
P3-OL13	1.608 (1)	N2-C6	1.489 (3)
P3-OL23	1.610 (1)	$\mathrm{C1}-\mathrm{C}^{\text {iii }}$	1.515 (3)
P1-P2	2.867 (1)	C2-C3 ${ }^{\text {iv }}$	1.523 (3)
P1-P3	2.873 (1)	C3-C4	1.519 (3)
P 2 -P3	2.870 (1)	C4- 55	1.530 (3)
$\mathrm{P} 3-\mathrm{Na}$	3.399 (1)	C5- $\mathrm{C}^{\text {v }}$	1.511 (3)
OE12-P1-OE11	120.11 (9)	$\mathrm{OE} 31-\mathrm{Na}-\mathrm{OW} 2$	144.96 (6)
OE12-P1-OL13	109.11 (8)	$\mathrm{OE} 12^{\prime \prime}-\mathrm{Na}-\mathrm{OW} 2$	93.05 (6)
OE11-P1-OL13	109.55 (8)	OE31 ${ }^{\prime}-\mathrm{Na}-\mathrm{OW} 2$	77.13 (6)
OE12-P1-OL12	108.66 (8)	$\mathrm{OE} 21-\mathrm{Na}-\mathrm{OW} 2$	111.99 (6)
$\mathrm{OE} 11-\mathrm{Pl}-\mathrm{OL} 12$	107.51 (8)	$\mathrm{OE} 31-\mathrm{Na}-\mathrm{OE} 11$	81.75 (5)
$\mathrm{OL13-P1-OL12}$	100.02 (7)	$\mathrm{OE} 12^{\mathrm{ij}}-\mathrm{Na}-\mathrm{OE} 11$	161.02 (6)
$\mathrm{O} E 22-\mathrm{P} 2-\mathrm{OE21}$	120.13 (9)	OE31 ${ }^{\prime}-\mathrm{Na}-\mathrm{OE} 11$	99.05 (5)
$\mathrm{O} E 22-\mathrm{P} 2-\mathrm{OL} 12$	106.97 (8)	$\mathrm{O} E 21-\mathrm{Na}-\mathrm{OE} 11$	75.12 (5)
$\mathrm{OE21}-\mathrm{P} 2-\mathrm{OL} 12$	109.86 (8)	$\mathrm{OW} 2-\mathrm{Na}-\mathrm{OE} 11$	75.08 (5)

Table 2. Hydrogen-bonding geometry $\left({ }_{A},^{\circ}\right)$

D—H. . A	D-H	H \cdot. A	D.. A	D-H.. A
OW1-HIW1. . $\mathrm{OE} 22^{\text {i }}$	0.74 (3)	1.99 (3)	2.729 (2)	176 (3)
OW1-H2W1.. $\mathrm{O} E 22^{\text {ii }}$	0.74 (3)	2.08 (3)	2.816 (2)	170 (3)
$\mathrm{OW} 2-\mathrm{H} 1 \mathrm{~W} 2 \cdots \mathrm{OE} 12^{\text {iin }}$	0.80 (3)	2.26 (3)	3.010 (2)	156 (3)
$\mathrm{OW} 2-\mathrm{H} 2 \mathrm{~W} 2 \cdots \mathrm{OE} 32^{\text {iv }}$	0.78 (5)	2.22 (5)	2.988 (2)	172 (4)
$\mathrm{N} 1-\mathrm{HIN} 1 . . \mathrm{OE} 1^{\text {iii }}$	0.83 (3)	2.16 (3)	2.825 (2)	138 (3)
N1-H2N1...OE32 ${ }^{\text {² }}$	0.89 (3)	1.98 (3)	2.861 (2)	172 (2)
$\mathrm{N} 1-\mathrm{H} 3 \mathrm{~N} 1 \cdots \mathrm{OE} 11$	0.96 (3)	2.05 (3)	3.006 (2)	177 (3)
N 2 - $\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{OE} 21$	0.87 (3)	1.91 (3)	2.775 (2)	169 (2)
N2-H2N2 . . $\mathrm{OE} 32^{\text { }}$	0.89 (3)	1.99 (3)	2.852 (2)	164 (2)
N2--H3N2..OW1	0.88 (3)	1.89 (3)	2.740 (3)	163 (2)

Symmetry codes: (i) $1-x,-y,-1-z$; (ii) $x, y, z-1$; (iii) $1-x, 1-y,-z$; (iv) $2-x, 1-y,-1-z$; (v) $x-1, y, z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Software used to prepare material for publication: SHELXL93.

The authors wish to express their gratitude to Professor T. Jouini (Département de Chimie Faculté des Sciences de Tunis, Tunisia) for the X-ray data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DU1172). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
Brown, I. D. (1976). Acta Cryst. A32, 24-31.
Charfi, M. \& Jouini, A. (1996). Acta Cryst. C52, 2250-2253.
Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Loiseau, T. \& Férey, G. (1994). J. Solid State Chem. 111, 403-415.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Thabet, H., Bdiri, M. \& Jouini, A. (1997). J. Solid State Chem. In preparation.
Thabet, H. \& Jouini, A. (1996). Acta Cryst. C52, 2248-2250.

Abstract

The title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3}\right)\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right)\right]_{n}$, adopts a square-pyramidal $\mathrm{Cu}^{\mathrm{II}}$ coordination with the tridentate N-salicylideneglycinato Schiff base dianion (TSB ${ }^{2-}$) and the 5 -ethyl-2-methylpyridine ligand bound in the basal plane. The apex of the pyramid is occupied by the carboxylic O atom from the neighbouring chelate at an apical distance of 2.268 (2) \AA, which is the shortest apical distance in this class of substances.

Comment

Copper(II) complexes with tridentate Schiff base dianions of the N-salicylideneaminoalkanoato type (TSB ${ }^{2-}$) represent a relatively simple model for studies of cooperative bonding effects, which can be investigated by electron paramagnetic resonance (EPR) spectroscopy. In these complexes, which are of the general type $[\mathrm{Cu}(\mathrm{TSB})(L)]_{n}$ (Warda, 1994), three donor atoms (O , N, O) of the Schiff base and a fourth donor atom from the neutral ligand L (N, O or S) normally define the base of a square pyramid. For isolated (monomeric) structures, the Cu coordination can be square planar or square pyramidal when a neutral donor ligand is located in the apical site ($n=1$; Ueki, Ashida, Sasada \& Kakudo, 1969; Warda, Friebel, Sivý, Plesch \& Švajlenová, 1996). If a phenolic O atom from a neighbouring molecule is apically coordinated, dimeric structures are formed ($n=2$; Warda, 1994; Warda, Dahlke, Wocadlo, Massa \& Friebel, 1997). $n=4$ is found in the case of (4-ethylpyridine)(N-salicylideneglycinato)copper(II) (Warda, 1997). Polymeric struc-

(I)

