METAL-ORGANIC COMPOUNDS

Acta Cryst. (1997). C53, 1182-1184

Sodium 1,6-Hexanediammonium Cyclotriphosphate Dihydrate

HÉDI THABET AND AMOR JOUINI

Laboratoire de Chimie du Solide, Département de Chimie, Faculté des Sciences de Monastir, Université du centre, 5000 Monastir, Tunisia

(Received 1 November 1996; accepted 11 April 1997)

Abstract

The mineral entities P_3O_9 and NaO_6 are connected by OW1 water molecules in the title compound, $Na^+.C_6H_{18}N_2^{2+}.P_3O_9^{3-}.2H_2O$, to form ribbons running parallel to the *c* axis. Four ribbons create a channel which holds the organic cation.

Comment

Organic compounds resulting from the interaction of cyclotriphosphoric acid with organic molecules have not been studied extensively. Only seven have been structurally well characterized (Durif, 1995; Thabet & Jouini, 1996). Among these compounds, only $K^+.C_2H_{10}N_2^{2+}.P_3O_3^{3-}$ was found to have a monovalent cation. In this work, we describe the crystal structure of sodium 1,6-hexanediammonium cyclotriphosphate dihydrate, (I), giving the second example of a compound obtained during the systematic investigation of the $H_3P_3O_9$ -organic- $M_2^4O-H_2O$ system.

$$Na^{+} \cdot \left[H_{3}N \longrightarrow NH_{3}\right]^{2^{+}} \cdot \left[P_{3}O_{9}\right]^{3^{-}} \cdot 2H_{2}O$$

The atomic arrangement in projection along the c direction and the formation of channels by four ribbons of mineral entities are shown in Fig. 1. Organic cations reside in these channels. Fig. 2 represents, in projection along the b direction, the ribbons resulting from the connection, along the c axis, of four P₃O₉ groups and two NaO₆ distorted octahedra. One of the two water molecules is located near the Na⁺ cation; the second one, OW1, links ribbons via hydrogen bonding with the organic cations along the OE31-OE31(2-x, 1-y, -1-z) edge, are associated in pairs. The P₃O₉ group observed in this arrangement has no internal symmetry. The P—P distances and the corresponding P—P—P angles range from 2.867 (1) to 2.873 (1) Å and from

59.88 (2) to $60.12 (2)^{\circ}$, respectively, corroborating the regular conformation of the P₃O₉ group.

The (N—C, C—C) distances and (N—C—C, C— C—C) angles, are similar to those reported previously for condensed phosphates with this organic cation (Loiseau & Férey, 1994; Charfi & Jouini, 1996; Thabet, Bdiri & Jouini, 1997), *i.e.* they lie within the ranges 1.489 (3)–1.530 Å and 111.2 (2)–112.9 (2)°, respectively. All hydrogen bonds, establishing cohesion between the different components of this atomic arrangement, are weak since the corresponding $O(N) \cdots O$ distances are 2.729–3.010 Å (Blessing, 1986; Brown, 1976).

Fig. 1. Projection along the c direction of the the atomic arrangement. P₃O₉ and NaO₆ are given in polyhedral representation. Large empty circles represent N atoms, grey circles O water atoms, black ones C atoms and small empty circles H atoms. Hydrogen bonds are denoted by full and dotted lines.

Acta Crystallographica Section C ISSN 0108-2701 © 1997

HÉDI THABET AND AMOR JOUINI

Fig. 2. The b-axis projection of two ribbons linked by OW1 molecules along the [101] direction. P₃O₉ and NaO₆ groups are in polyhedral representation.

Experimental

Na[NH₃(CH₂₆NH₃].P₃O₉.2H₂O was prepared by action of cyclotriphosphoric acid, H₃P₃O₉, with an aqueous solution of 1,4-diaminohexane (purity >97%) and sodium carbonate (purity >99.5%). The obtained solution was slowly evaporated at room temperature for two weaks. Crystals obtained in this way are stable under normal conditions of temperature and hygrometry. We note that H₃P₃O₉ and ion-exchange resin Amberlite IR 120. Studied by TG–DTA and DSC techniques, the title compound was dehydrated in two steps at 384 and 409 K. The overall Δ H of the dehydration is 84.2 kJ mol⁻¹. It is to be noted that this compound decomposes before melting.

Crystal data

$Na^{+}.C_{6}H_{18}N_{2}^{+}.P_{3}O_{9}^{-}.2H_{2}O$	Mo $K\alpha$ radiation
$M_r = 414.16$	$\lambda = 0.71069 \text{ Å}$

Triclinic $P\overline{1}$ a = 8.619 (1) Å b = 13.983 (1) Å c = 7.344 (1) Å $\alpha = 94.17 (1)^{\circ}$ $\beta = 68.69 (1)^{\circ}$ $\gamma = 102.14 (1)^{\circ}$ $V = 806.19 (13) \text{ Å}^{3}$ Z = 2 $D_x = 1.706 \text{ Mg m}^{-3}$ $D_m = 1.697 \text{ Mg m}^{-3}$ D_m measured by pycnometry (toluene as pycnometric liquid)

Data collection Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 3076 measured reflections 2832 independent reflections 2396 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.075$ S = 1.0502832 reflections 297 parameters All H atoms refined $w = 1/[\sigma^2(F_o^2) + (0.0431P)^2 + 0.332P]$ where $P = (F_o^2 + 2F_c^2)/3$ Cell parameters from 25 reflections $\theta = 13-14^{\circ}$ $\mu = 0.453 \text{ mm}^{-1}$ T = 293 (2) K Transparent $0.25 \times 0.20 \times 0.18 \text{ mm}$ Colourless

 $R_{int} = 0.010$ $\theta_{max} = 25^{\circ}$ $h = -10 \rightarrow 9$ $k = -16 \rightarrow 16$ $l = -8 \rightarrow 0$ 1 standard reflection frequency: 120 min intensity decay: 0.78%

 $(\Delta/\sigma)_{max} = -0.001$ $\Delta\rho_{max} = 0.260 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.290 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXL93* Extinction coefficient: 0.0169 (19) Scattering factors from *International Tables for Crystallography* (Vol. C)

Table 1. Selected geometric parameters (Å, °)

PI-OE12	1.464 (2)	P3Na'	3.4554 (9)
P1-OE11	1.490(2)	Na-OE31	2.361 (2)
P1-OL13	1.617(1)	Na-OE12 ⁱⁱ	2.373 (2)
P1-OL12	1.621(1)	Na-OE31 ⁱ	2.389(2)
P2-OE22	1.473(1)	Na-OE21	2,449 (2)
P2-OE21	1.486 (2)	Na—OW2	2,472 (2)
P2-OL12	1.611(1)	Na-OE11	2.637 (2)
P2-OL23	1.613(1)	Na-P3 ⁱ	3,4554 (9)
P3-OE31	1.476(1)	Na-Na ⁱ	3.611 (2)
P3-OE32	1.490(1)	NI-CI	1.496 (3)
P3—OL13	1.608(1)	N2-C6	1.489 (3)
P3—OL23	1.610(1)	C1-C2 ⁱⁱⁱ	1.515(3)
P1—P2	2.867(1)	C2-C3 ^{iv}	1.523 (3)
P1—P3	2.873(1)	C3-C4	1.519(3)
P2—P3	2.870(1)	C4C5	1.530(3)
P3—Na	3.399 (1)	C5-C6 ^v	1.511 (3)
OE12-P1-OE11	120.11 (9)	OE31-Na-OW2	144.96 (6)
OE12-P1-OL13	109.11 (8)	OE12"-Na-OW2	93.05 (6)
OE11-P1-OL13	109.55 (8)	OE31'-Na-OW2	77.13 (6)
OE12-P1-OL12	108.66 (8)	OE21-Na-OW2	111.99 (6)
OE11-P1-OL12	107.51 (8)	OE31-Na-OE11	81.75 (5)
OL13—P1—OL12	100.02 (7)	OE12 ⁱⁱ —Na—OE11	161.02 (6)
OE22-P2-OE21	120.13 (9)	OE31 ⁱ -Na-OE11	99.05 (5)
OE22-P2-OL12	106.97 (8)	OE21-Na-OE11	75.12 (5)
OE21-P2-OL12	109.86 (8)	OW2-Na-OE11	75.08 (5)

OE22-P2-OL23	107.75 (8)	P2—OL12—P1	124.97 (8)
OE21-P2-OL23	109.85 (8)	P3-OL13-P1	126.01 (8)
OL12-P2-OL23	100.46 (7)	P3OL23P2	125.91 (8)
OE31-P3-OE32	118.65 (8)	P1—P2—P3	60.12 (2)
OE31-P3-OL13	111.59(7)	P1—P3—P2	59.88 (2
OE32-P3-OL13	107.25 (7)	P2-P1-P3	60.00 (2)
OE31-P3-OL23	110.23 (8)	H1W1—OW1—H2W1	108 (3)
OE32-P3-OL23	106.23 (8)	H1W2—OW2—H2W2	102 (4)
OL13-P3-OL23	101.38(7)	N1-C1-C2 ⁱⁱⁱ	112.7 (2)
OE31-Na-OE12 ⁱⁱ	115.11 (6)	$C1^{vi}$ C2C 3^{iv}	111.9 (2)
OE31-Na-OE31	81.04 (5)	C4C3C2 ⁱⁱ	112.9 (2)
OE12 ⁱⁱ —Na—OE31 ⁱ	92.49 (6)	C3C4C5	112.7 (2)
OE31—Na—OE21	86.33 (5)	C6 ^v —C5—C4	111.2 (2)
OE12 ⁱⁱ —Na—OE21	96.42 (6)	N2C6C5 ^v	112.9 (2)
OE31 ⁱ —Na—OE21	166.78 (6)		

Symmetry codes: (i) 2 - x, 1 - y, -1 - z; (ii) x, y, z - 1; (iii) x - 1, y, z; (iv) x, y, 1 + z; (v) 1 - x, -y, -1 - z; (vi) 1 + x, y, z.

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdots A$	$D - H \cdots A$
OW1—H1 $W1$ ···OE22 ⁱ	0.74 (3)	1.99 (3)	2.729 (2)	176 (3)
$OW1 - H2W1 \cdot \cdot \cdot OE22^{ii}$	0.74 (3)	2.08(3)	2.816 (2)	170 (3)
OW2—H1 $W2$ ···OE12 ⁱⁿ	0.80(3)	2.26(3)	3.010(2)	156 (3)
OW2—H2W2···OE32 ^{iv}	0.78 (5)	2.22 (5)	2.988 (2)	172 (4)
$N1 - H1N1 \cdots OE11^{iii}$	0.83 (3)	2.16(3)	2.825 (2)	138 (3)
N1H2N1····OE32*	0.89(3)	1.98 (3)	2.861 (2)	172 (2)
N1—H3N1···OE11	0.96(3)	2.05 (3)	3.006 (2)	177 (3)
N2-H1N2···OE21	0.87(3)	1.91 (3)	2.775 (2)	169 (2)
$N2 - H2N2 \cdot \cdot \cdot OE32^{v}$	0.89(3)	1.99 (3)	2.852 (2)	164 (2)
N2H3N2···OW1	0.88(3)	1.89 (3)	2.740 (3)	163 (2)
Symmetry codes: (i) $1 - (iy) 2 - x, 1 - y, -1 - 1$	x, -y, -1	-z; (ii) $x, y, z, 1, y, z, z$	z-1;(iii) 1-	-x, 1-y, -z;

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Software used to prepare material for publication: SHELXL93.

The authors wish to express their gratitude to Professor T. Jouini (Département de Chimie Faculté des Sciences de Tunis, Tunisia) for the X-ray data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DU1172). Services for accessing these data are described at the back of the journal.

References

- Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
- Brown, I. D. (1976). Acta Cryst. A32, 24-31.
- Charfi, M. & Jouini, A. (1996). Acta Cryst. C52, 2250-2253.
- Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Loiseau, T. & Férey, G. (1994). J. Solid State Chem. 111, 403-415.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Thabet, H., Bdiri, M. & Jouini, A. (1997). J. Solid State Chem. In preparation.
- Thabet, H. & Jouini, A. (1996). Acta Cryst. C52, 2248-2250.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1997). C53, 1184-1186

catena-Poly[[(5-ethyl-2-methylpyridine-N)copper(II)]-μ-(N-salicylideneglycinato-O,N,O':O'')]

SALAM A. WARDA

Institut für Anorganische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, Lahnberge, 35032 Marburg, Germany. E-mail: warda@ax1501.chemie.unimarburg.de

(Received 27 February 1997; accepted 8 April 1997)

Abstract

The title complex, $[Cu(C_9H_7NO_3)(C_8H_{11}N)]_n$, adopts a square-pyramidal Cu^{II} coordination with the tridentate *N*-salicylideneglycinato Schiff base dianion (TSB²⁻) and the 5-ethyl-2-methylpyridine ligand bound in the basal plane. The apex of the pyramid is occupied by the carboxylic O atom from the neighbouring chelate at an apical distance of 2.268 (2) Å, which is the shortest apical distance in this class of substances.

Comment

Copper(II) complexes with tridentate Schiff base dianions of the N-salicylideneaminoalkanoato type (TSB^{2-}) represent a relatively simple model for studies of cooperative bonding effects, which can be investigated by electron paramagnetic resonance (EPR) spectroscopy. In these complexes, which are of the general type $[Cu(TSB)(L)]_n$ (Warda, 1994), three donor atoms (O, N, O) of the Schiff base and a fourth donor atom from the neutral ligand L (N, O or S) normally define the base of a square pyramid. For isolated (monomeric) structures, the Cu coordination can be square planar or square pyramidal when a neutral donor ligand is located in the apical site (n = 1; Ueki, Ashida,Sasada & Kakudo, 1969; Warda, Friebel, Sivý, Plesch & Švailenová, 1996). If a phenolic O atom from a neighbouring molecule is apically coordinated, dimeric structures are formed (n = 2; Warda, 1994; Warda, Dahlke, Wocadlo, Massa & Friebel, 1997). n = 4 is found in the case of (4-ethylpyridine)(N-salicylideneglycinato)copper(II) (Warda, 1997). Polymeric struc-

